Filter:
All-Sided Ideal From Minimal Generator - $ MinGen \shuffle \Sigma^\star $
Arity: 1
Comments:
All-Sided Ideal Generated - $ L\shuffle \Sigma^\star $
Arity: 1
Comments:
Bifix-freeness - $ L^b $
Arity: 1
$L^b = L^\le \cap L^\preceq$
Comments:
Catenation - $ L_1L_2 $
Arity: 2
For words $x$ and $y$ over an alphabet $\Sigma$, the catenation of $x$ and $y$ is denoted by $xy$ and it is the word obtained by attaching $y$ to the end of $x$.
Catenation is associative and the length of the new word $xy$ is the sum of the length of $x$ and the length of $y$.
For a language $L_1$ and a language $L_2$ over an alphabet $\Sigma$, the catenation of $L_1$ and $L_2$ is denoted by $L_1L_2$ and is defined by $L_1L_2 = \{ xy\mid x \in L_1, y \in L_2 \}$
Comments:
Closure - $ _\unlhd L $
Arity: 1
Let $\unlhd$ be a partial order on $\Sigma^*$; the $\unlhd$-closure of a language $L$ is the language $_\unlhd L = \lbrace x \in \Sigma^\star \ |\ x \unlhd w$ for some $w \in L \rbrace$.
Comments:
Complementation - $ \overline{L} $
Arity: 1
$\overline{L}= \Sigma^\star\setminus L$
Comments:
Cyclic Shift - $ L^{CS} $
Arity: 1
The cyclic shift of a language $L$ is defined as $L^{CS} = \{vu \in \Sigma^\star \mid uv \in L \}$
Comments:
Difference - $ L_1 \setminus L_2 $
Arity: 2
$L_1 \setminus L_2 = \{ x \in \Sigma^\star \mid x\in L_1 \text{ and } x \notin L_2\}$
Comments:
Factor-closure - $ _\sqsubseteq L $
Arity: 1
The factor-closure of a language $L$ is the language $_\sqsubseteq L = \lbrace x \in \Sigma^\star \ |\ x \sqsubseteq w$ for some $w \in L \rbrace$.
Note that $x \sqsubseteq w$ means that $x$ is a factor of $w$.
Comments:
Factor-freeness - $ L^\sqsubseteq $
Arity: 1
$L^\sqsubseteq = L - (\Sigma^+ L \Sigma^\star \cup \Sigma^\star L \Sigma^+)$
Comments:
Identity - $ L $
Arity: 1
Comments:
Intersection - $ L_1\cap L_2 $
Arity: 2
The intersection between two languages $L_1$ and $L_2$ can be defined as follows:
$\{ x \in \Sigma^\star | x \in L_1$ and $x \in L_2 \}$
Comments:
Left Ideal From Minimal Generator - $ \Sigma^\star MinGen $
Arity: 1
Comments:
Left Ideal Generated - $ \Sigma^\star L $
Arity: 1
Comments:
Left quotient - $ L_1^{-1} L_2 $
Arity: 2
Let $L_1$ and $L_2$ be two languages over an alphabet $\Sigma$. Then the left quotient of $L_2$ by $L_1$, denoted by $L_1^{-1} L_2$, is the language $\{ y\in \Sigma^\star \mid xy \in L_2$ and $x \in L_1 \}$
Comments:
Left quotient by a word - $ w^{-1}L $
Arity: 1
$w^{-1}L = \{ x\in \Sigma^\star \mid wx \in L\}$
Comments:
Orthogonal Catenation - $ L_1 \odot_\perp L_2 $
Arity: 2
A language L is the orthogonal catenation of $L_1$ and $L_2$, and denoted by $L = L_1 \odot_\perp L_2$, if every word $w$ of $L$ can be obtained in just one way as a catenation of a word of $L_1$ and a word of $L_2$.
Comments:
Plus - $ L^{+} $
Arity: 1
$L^+ = L^\star \setminus \{\varepsilon\}$
Comments:
Power - $ L^i $
Arity: 1
Given a language $L$ and $i\geq 2$,
Comments:
Prefix-closure - $ _\le L $
Arity: 1
The prefix-closure of a language $L$ is the language $_\le L = \lbrace x \in \Sigma^* \ |\ x \le w$ for some $w \in L \rbrace$.
Comments:
Prefix-freeness - $ L^\le $
Arity: 1
$L^\le = L - L\Sigma^+$
Comments:
Proportional removals for identity relation - $ \frac {1}{2} (L) $
Arity: 1
$\frac {1}{2} (L) = \lbrace x \in \Sigma^* \mid \exists y \in \Sigma^*$ with $\vert x \vert = \vert y \vert$ and $xy \in L \rbrace$
Comments:
Reversal - $ L^R $
Arity: 1
For a word $x$ over an alphabet $\Sigma$, the reversal of $x$ is denoted by $x^R$ and it is recursively defined by:
$\epsilon^R=\epsilon$, and $(ay)^R=y^Ra$ where $a\in \Sigma$ and $y\in \Sigma^\star$.
By definition, if $x = a_1\dots a_n$, where $n \ge 1$ and $a_1,\dots , a_n$ and are letters in $\Sigma$, the $x^R = a_n\dots a_1$.
For a language $L$ over an alphabet $\Sigma$, the reversal of $L$ is denoted by $L^R$ and is defined by $L^R = \{x^R \mid x \in L \}$.
Comments:
Reversal of Catenation - $ (L_1L_2)^R $
Arity: 2
Comments:
Reversal of Intersection - $ (L_1 \cap L_2)^R $
Arity: 2
Comments:
Reversal of Union - $ (L_1 \cup L_2)^R $
Arity: 2
Comments:
Right Ideal From Minimal Generator - $ MinGen\Sigma^* $
Arity: 1
Comments:
Right Ideal Generated - $ L\Sigma^* $
Arity: 1
Comments:
Right quotient - $ L_2L_1^{-1} $
Arity: 2
Let $L_1$ and $L_2$ be two languages over an alphabet $\Sigma$. Then the right quotient of $L_2$ by $L_1$, denoted by $L_2L_1^{-1}$, is the language $\{ x\in \Sigma^\star \mid xy \in L_2$ and $y \in L_1 \}$
Comments:
Right quotient by a word - $ L w^{-1} $
Arity: 1
$Lw^{-1} = \{ x \in \Sigma^\star \mid xw \in L\} $
Comments:
Shuffle - $ L_1 \shuffle L_2 $
Arity: 2
Comments:
Simulation - $ sim(L) $
Arity: 1
The language of the operation $sim(L)$ is $L$, but the model used to represent it is changed.
Comments:
Star - $ L^\star $
Arity: 1
The Kleene star ( also know as Kleene operator or Kleene closure) of a language $L$ can be defined as:
Given $A$ and $B$ languages, the following properties hold for the Kleene star operation.
$$ \begin{eqnarray*} A^\star A^\star & = & A^\star \\ (A^\star )^\star & = & A^\star \\ (\{ \epsilon \} \cup A)^\star & = & A^\star \\ \{ \epsilon \} \cup AA^\star & = & A^\star \\ \{ \epsilon \} \cup A^\star A & = & A^\star \\ (A^\star B^\star )^\star & = & (A\cup B)^\star \\ A(BA)^\star & = & (AB)^\star A \\ (A^\star B)^\star A^\star & = & (A\cup B)^\star \\ \emptyset ^\star & = & \{ \epsilon \} \end{eqnarray*} $$
Comments:
Star of Catenation - $ (L_1 L_2)^\star $
Arity: 2
Comments:
Star of Intersection - $ (L_1 \cap L_2)^\star $
Arity: 2
Comments:
Star of Reversal - $ (L^R)^\star $
Arity: 1
Comments:
Star of Union - $ (L_1\cup L_2)^\star $
Arity: 2
Comments:
Subword-closure - $ _\Subset L $
Arity: 1
The subword-closure of a language $L$ is the language $_\Subset L = \lbrace x \in \Sigma^* \ |\ x \Subset w$ for some $w \in L \rbrace$.
Note that $x \Subset w$ means that $x$ is a subword of $w$.
Comments:
Suffix-closure - $ _\preceq L $
Arity: 1
The suffix-closure of a language $L$ is the language $_\preceq L = \lbrace x \in \Sigma^* \ |\ x \preceq w$ for some $w \in L \rbrace$.
Note that $x \preceq w$ means that $x$ is a suffix of $w$.
Comments:
Suffix-freeness - $ L^\preceq $
Arity: 1
$L^\preceq = L - \Sigma^+L$
Comments:
Symmetric Difference - $ L_1\oplus L_2 $
Arity: 2
$$ \begin{eqnarray} L_1 \oplus L_2 & =& \{x \mid (x\in L_1 \wedge x\notin L_2) \cap (x\in L_2 \wedge x\notin L_1)\} \\ &=& (L_1\cup L_2) \setminus (L_1\cap L_2) \end{eqnarray} $$
Comments:
Two-Sided Ideal From Minimal Generator - $ \Sigma^\star MinGen \Sigma^\star $
Arity: 1
Comments:
Two-Sided Ideal Generated - $ \Sigma^\star L \Sigma^\star $
Arity: 1
Comments:
Union - $ L_1\cup L_2 $
Arity: 2
The union operation between two languages $L_1$ and $L_2$ can be defined as follows:
$\{ x \in \Sigma^\star | x \in L_1$ or $x \in L_2 \}$
Comments:
Unique Catenation - $ L_1 \circ L_2 $
Arity: 2
Comments:
Unique Square - $ L^{\circ2} $
Arity: 1
Comments:
Unique Star - $ L^\circ $
Arity: 1
Comments:
Unique Union - $ L_1 \buildrel\circ\over\cup L_2 $
Arity: 2
Let $L_1$, $L_2$ be languages over $\Sigma$. By unique union of $L_1$ and $L_2$, denoted as $L_1 \buildrel\circ\over\cup L_2$, we understand the set
$L_1 \buildrel\circ\over\cup L_2 = (L_1 \backslash L_2) \cup (L_2 \backslash L_1)$,
in other words, the symmetric difference of $L_1$ and $L_2$.
Comments: